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Abstract
The Widom–Rowlinson model plays an important role in the statistical
mechanics of second-order phase transitions, and yet there currently exists
no theoretical approach capable of accurately predicting both the microscopic
structure and phase equilibria. We address this issue using computer simulation,
density functional theory and integral equation theory. A detailed study of
the pair correlation functions obtained from computer simulation motivates a
closure of the Ornstein–Zernike equations which gives a good description of
the pair structure, and locates the critical point to an accuracy of 2%.

1. Introduction

The Widom–Rowlinson (WR) model [1, 2] is the simplest model which correctly captures the
phenomenology of fluid–fluid demixing for systems interacting via short-range forces and is
therefore of fundamental importance in the theory of fluids. In particular, the model undergoes
phase separation at sufficiently high density with a critical point which belongs to the Ising
universality class [3]. The model can be regarded as a non-additive hard-sphere mixture in
which like species do not interact but unlike species exhibit hard-sphere repulsion with a
given collision diameter σ . Although there exist related WR-type models in which only the
cross interaction is non-zero, we will reserve the term WR model for that with a hard-sphere
interaction between unlike species.

Despite the simplicity of the interactions, an accurate theory of the bulk structure and
thermodynamics of the WR model has proved elusive. The lowest-order mean-field (MF)
theory [1, 2] yields a crude description of the pair correlation functions and predicts a phase
boundary between A-rich and B-rich phases for which the location of the critical point is in
considerable error when compared to recent simulation estimates [4–9]. However, to go beyond
the lowest-order theory appears to be a very demanding task. The first attempts at systematic
improvement were made by incorporating information from higher-order virial coefficients into
the theory. In [10], virial, activity and cumulant expansions were considered. In [11], the virial
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series was studied for a WR-type model in which the AB interaction is that of oriented hard
cubes (chosen to facilitate the calculation of higher-order virial coefficients). In neither case
was reliable improvement obtained. Including additional virial coefficients was found to yield
either results worse than the MF theory or no critical point, due to the appearance of multiple
van der Waals loops in the free energy. The origin of these difficulties is the extremely erratic
behaviour of the partial sums of the virial series. This issue was addressed in [12] in which the
virial series of a WR-type model with Gaussian AB Mayer function was studied. Even though
the virial series for this model is much better behaved than for the WR case, Padé summation
of terms up to 11th order in density was required to locate the critical point with reasonable
accuracy. Convergence of the virial series in the neighbourhood of the critical point for the WR
model appears to be much slower than for the Gaussian version. Although caution should be
exercised when drawing conclusions regarding critical behaviour from low-density expansions,
it seems likely that the critical point of the WR model lies outside the radius of convergence of
the virial series.

The correlation functions of the MF approximation in both the two-component and
effective one-component versions of the model were studied in [13]. The correlation functions
were shown to display classical behaviour at the MF critical point and were proven to be
exact in the limit of infinitely high dimensionality. A number of established integral equation
theories have also been applied to the WR model [4], although none were able to account
satisfactorily for the structure or phase boundary. Of the theories tested, only the Percus–Yevick
(PY) equation displayed a spinodal line; in all other cases (hypernetted chain, Martynov–
Sarkisov, Rogers–Young and Ballone–Pastore–Galli–Gazzillo equations) the theory no longer
converges in a region of the phase diagram, prior to divergence of the partial structure factors.
Although PY theory is the best among the standard theories, it still gives a poor description
of the structure and the critical points obtained from the spinodal and virial free energy are
highly inconsistent. In order to address these difficulties, Yethiraj and Stell (YS) developed an
integral equation specifically for the WR model in which analytic expressions are derived for
the direct correlation functions between like species cAA(r) and cB B(r) by resumming a class of
diagrams which can be evaluated analytically [14, 15]. Unfortunately the YS equation strongly
overestimates the structure and the pair correlation functions do not compare favourably with
computer simulation.

In [16], a fundamental measures density functional was constructed for the WR model
suitable for application to inhomogeneous situations. The theory predicts reasonable behaviour
for the pair correlations and improves slightly on the predictions of the MF theory for the
phase behaviour. However, the location of the critical point remains in error and thus does not
permit investigation of the structure at statepoints in the vicinity of the simulation critical point.
Despite all these efforts, it can be concluded that the overall level of accuracy of the existing
theories remains unsatisfactory, given the fundamental nature of the model.

In this work we seek to develop a theory for the WR model which provides accurate
predictions for the pair structure and which is able to locate the critical point to an acceptable
level of accuracy. In order to base our approximations on firm foundations we will use
simulation results for the pair structure to guide the construction of our theory. We focus in
particular on the total correlation function hi j(r) = gi j(r) − 1, where gi j(r) are the radial
distribution functions, the bridge function bi j(r) and the direct correlation function ci j(r). The
paper is structured as follows. We begin by discussing the model in section 2. In section 3,
we present computer simulation results for hi j(r), ci j(r) and bi j(r), focusing on high-density
statepoints off the critical line where the model is least well understood. These simulation
results will act as motivation for our theoretical approaches in section 4. Finally, we summarize
our results and suggest possibilities for future work.

2



J. Phys.: Condens. Matter 19 (2007) 036101 J M Brader and R L C Vink

0 0.2 0.4 0.6 0.8 1
x

0.4

0.6

0.8

1

ρ

Figure 1. The phase diagram of the WR model in (x, ρ) representation. The line is the spinodal
from the new integral equation closure, see equation (12). The circle marks the location of the
critical point, as obtained in the simulations of [9]. For comparison we also show the critical point
predicted by the simple mean-field theory of [1, 2] (diamond) and the density functional theory
of [16] (square).

2. The WR model

The binary WR model is a symmetric mixture consisting of species A and B . The interaction
between like species is ideal, φAA(r) = φB B(r) = 0, while unlike species interact via a hard-
core potential of diameter σ ; φAB(r) = ∞ for r < σ , and zero otherwise. We henceforth take
σ as the unit of length. Above a certain critical density ρ = (NA+NB)/V , the WR model phase
separates into two phases, one phase containing predominantly A particles, and the other phase
mostly B particles. Here, V is the volume, and NA (NB ) denotes the number of A (B) particles
in the system. Due to the symmetry of the model, the compositions of the phases are given by
x and 1− x , respectively, with x = NA/(NA + NB ). At the critical point one has x = 1/2. The
phase diagram is thus conveniently represented in the (x, ρ)-plane; see figure 1. For densities
ρ > ρcrit, coexisting phases of composition x and 1 − x can be identified. The binodal, which
is symmetric about the line x = 1/2 in the (x, ρ) representation, terminates at the critical
point. In the mean-field approximation the binodal exhibits a parabolic curvature around the
critical point (recall the mean-field critical exponent of the order parameter β = 1/2). The
simplest mean-field estimate of the critical density is ρcrit = 3/2π = 0.4775 [1, 2], whereas
the critical point of the PY spinodal lies at ρcrit = 1.12 [17]3. We emphasize that both of
these approximations are mean field in character and exhibit classical critical exponents. In
contrast, the best current simulation estimates for the critical density are ρcrit = 0.7470(8) [7]
and ρcrit = 0.7486 ± 0.0002 [9], which, as was pointed out in section 1, is not accounted for
by any theoretical approach.

A possible source for the discrepancy between simulation and theory is the fact that
the WR model belongs to the universality class of the Ising model. For the Ising model,
β ≈ 0.326 [18], implying a flatter binodal. Computer simulations of the WR model indeed
recover Ising critical behaviour [5–7, 9]. However, in order to observe the pure Ising exponent
β , the (x, ρ) representation of the binodal is not the most convenient. For Ising systems, there is

3 Our numerical solutions of the PY equation confirm the classical character of the PY critical point for the WR model,
in accord with the findings of [17]. We note that the PY condition cii (r) = 0 allows the binary Ornstein–Zernike (OZ)
equations to be reduced to a single OZ equation of standard form. An adaptation of the numerical method presented
in [31] can then be applied to study the critical region.
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Figure 2. Phase diagram of the WR model in (ρA, zB ) representation. The solid curve shows the
binodal; the open square marks the location of the critical point. The binodal was constructed using
simulation data of [9] combined with finite size scaling, and so, on the scale of the above graph,
accurately reflects the true thermodynamic limit form. The closed squares (labelled 1–6 on the
horizontal line in the one-phase region), mark the statepoints at which the simulations of this work
were performed to obtain the pair correlation functions; see also table 1.

an additional singularity in the specific heat, governed by the critical exponent α ≈ 0.109 [18].
In the (x, ρ) representation, the curvature of the binodal is then described by the renormalized
exponent β� = β/(1 − α) [19] (in general, critical exponents become renormalized if the
critical point is approached by varying a quantity which is not a field variable). In order to
observe the pure Ising exponent, the binodal should be represented in analogy to the (density,
temperature) phase diagram of simple fluids. For the WR model, this would be a grand-
canonical representation, where the density ρA = NA/V of A species, and the fugacity zB

of B species, are the relevant variables [5, 9, 20] (the choice for A or B is of course arbitrary).
Shown in figure 2 is the phase diagram in (ρA, zB ) representation. The curvature of the binodal
around the critical point, at ρA ≈ 0.3743 and zB ≈ 0.937 91, is now described by the pure
Ising exponent β [9]. In contrast to the (x, ρ) representation, the symmetry of the WR model
is not obvious from the binodal of figure 2. The symmetry, of course, still exists. In the
grand-canonical ensemble, it corresponds to the line of equal fugacities z A = zB . Note that
for mean-field systems, the curvature of the binodal is not affected by the representation, since
here α = 0.

3. Computer simulations

Fantoni et al [8] have presented computer simulation results for gi j(r) and ci j(r) for several
different values of ρ along the symmetry line x = 1/2. One of the most interesting conclusions
arising from this work is that the Percus–Yevick condition, cAB(r) = 0 for all r > 1, is
satisfied to very high accuracy, even for statepoints approaching the critical point. However, it
is not at all clear whether this property is also maintained off the symmetry line; the non-trivial
cancellations which apparently occur in the diagrammatic expansion of ci j(r > 1) on the
symmetry line may no longer hold when ρA �= ρB . Indeed, a theoretical approach which aims
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Table 1. Properties of the statepoints at which pair correlation functions were obtained using
computer simulation. Shown for each statepoint is the density ρA of A particles, the fugacity zB of
B particles, as well as the corresponding density ρB of B particles, the composition x , and the total
density ρ.

Statepoint ρA zB ρB x ρ

1 0.1 0.8 0.5815 0.1467 0.6815
2 0.3 0.8 0.3366 0.4713 0.6366
3 0.4 0.8 0.2481 0.6172 0.6481
4 0.5 0.8 0.1758 0.7399 0.6758
5 0.6 0.8 0.1191 0.8344 0.7191
6 0.7 0.8 0.0774 0.9004 0.7774

to describe phase separation must be able to accurately describe the change in pair structure as
a function of x . As far as we are aware there exists no detailed study of the behaviour of the
pair structure for x �= 1/2.

3.1. Simulation details

Motivated by the above considerations, we have performed simulations for the off-symmetry
statepoints given in table 1. To simulate the off-symmetry statepoints x �= 1/2, we use a quasi-
grand-canonical simulation ensemble, whereby the system volume V , the density of A particles
ρA, and the fugacity zB of B particles are fixed, while the number of B particles fluctuates.
The simulations are performed in cubic simulation boxes of edge L = 30, using periodic
boundary conditions in all d = 3 directions. For the statepoints considered by us, this implies
approximately 15 000 particles in each simulation box. To simulate efficiently, a cluster Monte
Carlo move is used [21, 22]. We specialize to zB = 0.8, which is well below its critical value
zB,cr ≈ 0.937 91 [5, 9], and inside the one-phase region of the phase diagram; see figure 2. The
density of the A particles is then varied over the range 0.1–0.7. For each statepoint, the average
concentration ρB of B particles is measured, as well as the radial distribution functions gi j(r).
The radial distribution functions are evaluated using a standard method [23], and averaged
over approximately 5000 independent configurations. For each statepoint, this requires an
investment of about 120 CPU hours. A total of six distinct statepoints is considered. For
each statepoint, the average concentrations ρA and ρB , as well as the total concentration ρ, and
the composition x , are listed in table 1.

3.2. Analysis of simulation structure

In figure 3 we show the total correlation functions hi j (r) for three of the considered statepoints.
The correlations between like species are monotonic and exhibit no sign of any oscillatory
packing behaviour. The increase of the hii (r) as r → 0 reflects the tendency of like species to
overlap in order to maximize the free volume and hence the entropy of the system. Equivalently,
this clustering behaviour can be viewed as reflecting the attractive (many-body) depletion
potential acting between spheres of species A (B), induced by the sea of non-interacting spheres
of species B (A). For example, for small values of x we expect h AA(r) = exp[−βφdep(r)] − 1
and cAA(r) = exp[−βφdep(r)] + βφdep(r) − 1, with depletion potential

βφdep(r) = − 4
3πρB(1 − 3

4r + 1
16r 3), (1)

for r < 2, and zero otherwise. The cross-correlation function h AB(r) is negative for all values
of r and indicates that in addition to the trivial hard-core exclusion there is also an effective
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Figure 3. The correlation functions hi j (r) from simulation for statepoints 6 (solid line), 4 (broken
line) and 2 (dotted line) (see table 1). Note that h AB (r < 1) = −1.
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Figure 4. The correlation functions cAA(r) and cB B (r) from simulation for statepoints 6 (solid
line), 4 (broken line) and 2 (dotted line).

repulsion between species of opposite type. This is a consequence of the clustering of like
particles and leads to the appealing picture of the bare hard-sphere repulsion between species
A and B being supplemented by a softly repulsive ‘dressed’ interaction describing particles
shrouded by a cluster of like particles. Naturally, this effective interaction is of statistical origin
and is therefore not to be taken too literally. The direct correlation functions are shown in
figures 4 and 5. To obtain the ci j(r) from our simulated hi j(r) we apply the method described
in [8]. The Fourier transform h̃i j(k) yields c̃i j(k) via the Ornstein–Zernike (OZ) relation. We
then construct the difference γ̃i j(k) = h̃i j(k) − c̃i j(k) (the Fourier transform of a continuous
function in real space) and transform back to get γ̃i j(k). We thus obtain ci j(r) from the
difference hi j (r) − γi j(r). Both cAA(r) and cB B(r) display the same monotonic behaviour
observed for the total correlation functions. The cii (r) are shorter-range functions than the
corresponding hii (r), as expected. In figure 5 we show the cross-correlation function cAB(r).
The form of cAB(r) inside the core (r < 1) is quite different from the familiar case of an additive
hard-sphere system for which it is found that chs

AB(0) � chs
AB(1−) at all densities. Outside the

core, r > 1, we find that the value of cAB(r) does not exceed 10−3 for any of the simulated
statepoints. A quantity which is often of interest in liquid-state integral equation theories is the
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Figure 5. The correlation function cAB (r) from simulation for statepoints 6 (solid line), 4 (broken
line) and 2 (dotted line). |cAB (r > 1)| < 10−3 at all simulated statepoints.
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Figure 6. The correlation functions bi j (r) from simulation for statepoints 6 (solid line), 4 (broken
line) and 2 (dotted line).

bridge function bi j(r). The bridge functions for a binary mixture interacting via pair potentials
are defined by the relation

hi j (r) = e−βφi j (r)+hi j (r)−ci j (r)+bi j (r) − 1, (2)

where φi j(r) is the pair potential acting between species i and j . In figure 6 we show the
bridge functions obtained from our simulations. Note that data for bi j(r) for r < 1 are not
displayed as these are not required for calculations of the pair structure for systems with hard-
core interactions; see equation (2). While the function bAB(r) is of a rather simple form the
functions bii (r) take both positive and negative values.

We now consider the implications of the above for constructing approximate theories.
The most important information to come from the simulations is that the PY approximation
cAB(r > 1) = 0 is satisfied to high accuracy at all of the considered statepoints. This
fully supports and extends the findings of Fantoni et al [8] and implies that the condition
cAB(r > 1) = 0 should be enforced in any approximate theory for this model. As the exact
core condition h AB(r < 1) = −1 is also satisfied, this effectively reduces the problem to
that of finding accurate approximations for cAA(r) and cB B(r). We note that our verification of
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the PY condition for the cross-correlation functions invalidates the speculation in the discussion
of [14]. Here, it was suggested that a more accurate cAB(r > 1) could be achieved by modelling
the tail with a Yukawa function and adjusting the free parameters to achieve thermodynamic
self-consistency. This program, while successful for the case of hard spheres, would apparently
lead to no significant improvement over the simple PY approximation for the present model.

The direct correlation functions cii (r) are of significantly shorter range than the hii (r)

and possess a relatively simple monotonic form. It may therefore be useful to model the
cii (r) by suitably chosen basis functions of finite range. By choosing finite-range basis
functions we naturally suppress the development of realistic critical exponents (the direct
correlation functions are known to become long range at the critical point [24]). However,
we do not necessarily restrict ourselves to mean-field criticality in making this choice. The
bridge functions between like species bii (r) are very different from those of the hard-sphere
system [25] and exhibit regions of both positive and negative sign. The function bAB(r > 1),
although superficially similar to the hard-sphere bridge function, is found to display a quite
different functional form and cannot be reasonably fitted using the PY bridge function for
hard spheres at any effective density. These findings suggest that modified-hyper-netted-chain
(MHNC)-type approximations [26], where universality of the hard-sphere family of bridge
functions is assumed, will not prove useful in this case. Indeed, the complex damped oscillatory
form of the functions bii(r) suggests that approaches aiming to directly approximate the bridge
functions should be avoided.

4. Theoretical approaches

The simulation results presented in the previous section indicate that a successful theory for the
pair structure of the WR model may be constructed using the conditions h AB (r < 1) = −1,
cAB(r > 1) = 0 in combination with a suitable ‘ansatz’ for the short-range functions cii(r).
In this section we investigate this possibility. Our desire to identify suitable basis functions
to describe cii (r) leads us to consider a simple virial expansion based density functional
approximation. This yields analytic results for the pair structure which, although only strictly
valid at low density, actually give a reasonable account of the structure over the entire phase
diagram. Modification of these results to incorporate the core condition leads to a new integral
equation closure.

4.1. Density functional approach

Density functional theory (DFT) is a formalism which enables the calculation of
thermodynamic and structural properties of systems subject to spatial inhomogeneity [27].
A key result is the stationarity of the grand potential with respect to variations in the
inhomogeneous density fields, δ�/δρi(r) = 0, where i labels the species. Given an
explicit functional, this condition yields a set of coupled equations for the ρi (r). Ideally,
approximations within DFT are made directly at the level of the free energy, which is a
physically intuitive quantity. Correlation functions of all order can then be generated by
successive functional differentiation. This is to be contrasted with standard integral equation
approaches for which the closure is usually introduced at the level of the pair correlation
functions, and which often make no direct reference to, or guarantee the existence of, an
explicit generating functional. In practice, the distinction between integral equation and
DFT approaches is frequently less clear-cut and many approximate DFTs rely on correlation
functions obtained from integral equation theories as input.

The majority of modern density functional approaches are weighted density
approximations in which the inhomogeneous density distributions are smoothed by some
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physically motivated set of weight functions [27]. Using cluster expansion methods [28]
the exact excess Helmholtz free energy density can be expressed as a power series in the
inhomogeneous density fields, ρi (r). For the WR model, truncation of this series at O(ρ2)

recovers the original MF theory [1, 2]. The only diagram contributing to O(ρ3) is the triangle
diagram consisting of two root points and a single field point, all connected by Mayer bonds.
As the root and field points cannot be labelled according to species without either an A–A or
B–B Mayer bond occurring, the diagram is equal to zero. The first correction to the MF theory
comes from the term O(ρ4), which contains only one diagram. By neglecting terms O(ρ5) and
higher we obtain the following simple approximation:

βF ex[ρA, ρB ] = − − (3)

where black and grey field particles are associated with the density fields ρA(r) and ρB(r),
respectively, and are connected by Mayer bonds. Note that the above diagrams are unlabelled.
To convert to labelled diagrams requires multiplication by the appropriate prefactor (1 and 1/4).

At this point we draw on the experience of previous virial expansion studies of the WR
model [10–13] and take the truncated expansion (3) as the generating functional for our
correlation functions, at least to a first level of approximation. We argue that the above two
diagrams contain the dominant structural elements (basis functions) for an accurate description
of the WR model at all densities. Our reasons for this assertion are the following:

(i) investigations of the WR virial series suggest that inclusion of higher-order diagrams
worsens the description of the thermodynamic properties,

(ii) the pair direct correlations and radial distribution functions generated from the OZ route
give a reasonable account of existing simulation results at the simulated statepoints (see
below),

(iii) it can be proven that the MF theory becomes exact in the limit of infinite dimension [29].

The key part of the proof rests on identification of the four-field particle diagram as the
numerically dominant correction term to the MF theory.

It should be emphasized that although equation (3) provides a reasonable approximation
for the thermodynamic functions over a portion of the phase diagram, the functional
(equation (3)) is not a good theory for the phase boundary and is not intended as
such. Construction of a functional which accurately predicts both the bulk binodal and
inhomogeneous structure is a lofty goal which we do not pursue in the present work (see [16]
for work in this direction). Here we present equation (3) as a means to obtain closures at the
pair correlation level which may be subsequently modified and improved. The bulk free energy
obtained from the uniform density limit of equation (3) is given by

β Fex

V
= 4

3
πρAρB − 34 816

181 440
π3ρ2

Aρ2
B . (4)

The total Helmholtz free energy, β F/V = ρ log(ρ) − ρ + ρx log(x) + ρ(1 − x) log(1 − x) +
β Fex/V , displays two van der Waals loops as a function of x for sufficiently large values of ρ,
and is thus unable to account for the demixing transition.

Within DFT the bulk pair correlation functions may be obtained using either the test-
particle route (minimizing the functional in the external field due to a particle fixed at the
origin) or the Ornstein–Zernike (OZ) route. Following the OZ route the inhomogeneous pair
direct correlation functions are obtained by taking two functional derivatives of the excess free
energy functional:

ci j(r1, r2) = −β
δ2F ex[{ρi}]

δρi(r1)δρ j(r2)
. (5)

9
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The homogeneous limit is then taken, ci j(r1, r2) → ci j(r12), and the bulk direct correlation
functions are substituted into the OZ relations to yield the radial distribution functions. For a
binary fluid the OZ relations for the homogeneous fluid are given by

h̃i j (k) = c̃i j(k) +
∑

l

ρl c̃il(k)h̃l j (k), (6)

where the tilde denotes a Fourier transform. Application of this prescription to the
functional (3) generates the following simple expressions for the bulk direct correlation
functions:

cAB(r) = f (r) + ρAρB f (r)t2(r) (7)

cAA(r) = ρ2
Bt2

1 (r)/2 (8)

cB B(r) = ρ2
At2

1 (r)/2, (9)

where f (r) is the Mayer function, f (r) = −1 for r < 1, f (r) = 0 for r > 1, and t1(r) and
t2(r) are the two lowest-order chain diagrams given by

t1(r) = 4
3π

(
1 − 3

4r + 1
16r 3

)
r � 2 (10)

t2(r) = −
(

π2

5040

)
(r 3 + 12r 2 + 27r − 6)(r − 3)4 r � 3, (11)

and zero otherwise. Figure 7 compares the pair correlation functions obtained from
equations (6)–(9) with the simulation results for statepoint 2. The level of agreement with
the simulation gi j(r) at such a high density (ρ ≈ 0.85ρcrit) is surprising, given the fact that
the correlation functions are generated from a truncated density expansion. In particular, the
calculated gAB(r > 1) lies very close to the simulation results. Although the general features
of the ci j(r) are captured, the overall level of agreement is less satisfactory than for the gi j(r).

4.2. Imposing the core condition

The most obvious deficiency of the present approach is the violation of the exact core condition,
h AB (r) = −1 for r < 1. Violation of this condition is a general drawback of the OZ route
in DFT studies and only in very special cases, e.g., the Rosenfeld functional for additive hard
sphere mixtures [30], is the core condition exactly satisfied. However, as we are primarily
interested in the pair correlations this difficulty is easily resolved by replacing the closed form
expression equation (7) for cAB(r) with a relation which enforces the core condition. Since
our simulation results strongly suggest the approximation cAB(r > 1) = 0, and given that this
condition is already satisfied by equation (7), we are led to suggest the following relations:

h AB (r) = −1 r < 1

cAB(r) = 0 r � 1
cAA(r) = ρ2

Bt2
1 (r)/2

cB B(r) = ρ2
At2

1 (r)/2.

(12)

Combined with the OZ relation, equation (6), this leads to a closed theory for the pair
correlation functions. These relations correspond to a linearization of the expressions for
cAA(r) and cB B(r) in the YS integral equation [14].

In figure 8, we show some results obtained using closure (12) at the same statepoint shown
in figure 7. Equation (12) was solved using standard iterative numerical methods. Imposing the
core condition leads to a distinct improvement upon the closed-form expression equation (7).
The functions cAA(r) and cB B(r) are identical to those shown in figure 7, but cAB(r) now
lies considerably closer to the simulation result. The functions gAA(r) and gB B(r) remain in
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Figure 7. The total and direct correlation functions for statepoint 2. Lines are the results of
equations (6)–(9). Circles are the simulation results.

error for small separations, but the level of agreement for r > 1 is improved. There are also
small corrections to the function gAB(r) over the entire range. We note that by imposing the
core condition we are effectively incorporating many more diagrams (in principle, an infinite
number) into our description of the pair correlations. The price we pay for going beyond the
simple virial approach of (3) is that we must resort to fully numerical solution.

4.3. Spinodal line and critical point

As ρ is increased for fixed x , the partial structure factors Si j (k = 0) diverge at a well defined
point. The locus of these points defines the spinodal line which divides the phase diagram into
regions of mechanical stability and instability. The minimum of this curve, located at x = 1/2
for the present model, identifies the critical point. It is well known that approximate integral
equations often fail to exhibit a true spinodal but yield instead a no-solutions region in the phase
diagram within which the theory simply fails to converge (see [31] and references therein).
Indeed, the study of Shrew and Yethiraj [4] performed on the symmetry line, and our own
investigations for off-symmetry compositions, strongly suggest that all standard closures, with
the exception of the mean-field and Percus–Yevick theories, fail to exhibit diverging structure
factors prior to breakdown of the theory, and are therefore incapable of making any comment
regarding the region in the vicinity of the critical point.
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Figure 8. The total and direct correlation functions for statepoint 2, close to the symmetry line.
Lines are the results of closure equation (12). Circles are the simulation results.

In figure 1, we show the spinodal resulting from the closure of equation (12). For
comparison, we also show the critical point from the mean-field theory [1, 2] and that from the
density functional theory of [16]. The critical point predicted by equation (12) lies remarkably
close to the simulation result. We find ρcrit = 0.762, which compares very favourably with
the best current simulation estimates ρcrit = 0.7470(8) [7] and ρcrit = 0.7486 ± 0.0002 [9].
This represents a substantial improvement upon previous theoretical treatments. The numerical
solution of equation (12) for points of high compressibility (i.e., close to the spinodal) deserves
some additional comment. It is a general difficulty of standard numerical methods based on
equation (6) that, upon approaching the critical point, the diverging correlation length renders
inadequate methods requiring truncation of hi j(r) at some finite range R. The finite-size effects
which result from such truncation give rise to considerable difficulties when attempting to
numerically assess the critical behaviour of a given integral equation [31]. These difficulties
have been overcome for one-component fluids and mixtures with additive interactions using
specialized algorithms [31]. However, these methods do not generalize easily to non-additive
mixtures, such as the WR model, and we have thus resorted to more traditional methods
of iterative solution [32]. For this reason we make no definite claims regarding the critical
exponents of the present theory; this would require a detailed study using specially tailored
algorithms which goes beyond the scope of the present work. However, the numerical methods
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we have employed are certainly capable of unambiguous determination of the spinodal line.
This enables us to confirm that the locus of points which we have identified is indeed a true
spinodal and not simply a region of non-convergence. Although we refrain from making final
claims regarding the nature of the criticality in our equations, we do make the observation that
the spinodal is distinctly flatter in the vicinity of the critical point, compared to the mean-field
approaches of [1, 2, 16] or the PY theory. This may indicate interesting non-classical behaviour,
and certainly warrants further investigation.

5. Conclusions

Using a combination of computer simulation and theoretical methods we have developed
an integral equation for the WR model which yields good results for the pair structure
and predicts the location of the critical point to an accuracy of approximately 2%. This
represents a considerable improvement upon previous theories which exhibit errors in the
range 30–50%. Our quasi-grand-canonical computer simulations provide the first detailed
information regarding the pair structure of the WR model for statepoints off the symmetry
line (x �= 1/2) and provide confirmation that the condition ci j(r > 1) = 0 is satisfied
to a good level of approximation over the entire one-phase region. The integral equation
here developed is very simple to use and requires no more numerical effort than solving
standard integral equations such as PY or HNC. Our choice of basis functions for cii (r) do
leave some room for improvement, albeit at the cost of increased numerical effort. A more
sophisticated scheme could involve basis functions with a free parameter, to be determined
by enforcing thermodynamic consistency between virial and fluctuation equations of state.
Considerable success was achieved in the case of additive hard-sphere mixtures by constructing
an approximation for ci j(r) using basis functions taken from the low-order diagrams in the
virial expansion [33]. The size of the field particle was treated as a parameter and scaled
to interpolate between known low- and high-density limits. Whether a similar procedure is
also feasible for the WR model remains an open question. Following completion of this work
we were made aware of a very recent study in which a triplet level integral equation closure
was applied to the WR model [34]. This approach is significantly more complicated than
that followed in the present work but seems to yield very promising results worthy of further
investigation.
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